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In this paper we present a new spectral method for the fast evaluation of the
Fokker—Planck—Landau (FPL) collision operator. The method allows us to obtain
spectrally accurate numerical solutions with sim@ynlog, n) operations in con-
trast with the usuaD(n?) cost of a deterministic scheme. We show that the method
preserves the total mass whereas momentum and energy are approximated with
spectral accuracy. Numerical results for the FPL equation for Maxwell molecules
and for Coulomb interactions in two and three dimensions in velocity space are also
given. (© 2000 Academic Press
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1. INTRODUCTION

This paper is devoted to the development of numerical schemes for the accurate con
tation of the solution of the Fokker—Planck—Landau (FPL) equation. Here we will main
concentrate on the approximation of the collision operator, and hence of the veloc
space.

The FPL equation is a common kinetic model in plasma physics. It is described b
nonlinear partial integrodifferential equation

af
ﬁJrv-vxszL(f,f), x,v € IR®, (1.1)
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whereQ, is the Landau collision operator

Qu(f, Hw) =V, - / A —v)(f IV f () = FVy, fw)) duv.. (1.2)

The unknown functionf = f (X, v, t), which represents the density of a gas in the phas
space of all positions and velocitiesv of particles, is assumed to be nonnegative an
integrable together with its moments up to the order two.

In (1.2) A depends on the interaction between particles andlixal nonnegative and
symmetric matrix of the form

A(2) = ¥(|zDI1(2). 1.3

Here W is a nonnegative function anid(z) is the orthogonal projection upon the space
orthogonal taz,

I (2) = (3ij L > (1.4)

1212
In the case of inverse-power laws with> —3,
V() = Alz|"+2, (1.5)

whereA > 0 is a constant.

As for the Boltzmann equation, different valuegdéad to the usual classification in hard
potentials(y > 0), Maxwellian moleculegy = 0), or soft potentialgy < 0). This latter
case involves the Coulombian cage= —3, which is of primary importance for plasma
applications.

Equation (1.1) is obtained as a limit of the Boltzmann equation when all the collisio
become grazing. The original derivation of the equation is due to Landau [18].

For the formal mathematical derivation of the equation, we cite Arsen’ev and Buryak [
Degond and Lucquin-Desreux [10] and Desvillettes [12]. Recently Villani [33] obtained
complete rigorous proof of this asymptotic problem in the space homogeneous situat
The mathematical properties of the spatially homogeneous FPL equationwhdhhave
been recently studied by Desvillettes and Villani [13].

The numerical solution of nonlinear kinetic equations, such as the FPL equation, r
resents a real challenge for numerical methods. This is essentially due to the nonlinec
to the large number of variables (seven for the full problem), and to the threefold integ
(1.2). In addition, this integration has to be handled carefully since it is at the basis of
macroscopic properties of the equation.

The structure of the FPL collision operator is similar to that of Boltzmann’s collisio
operator and has the same fundamental properties of conserving mass, momentum
energy,

1

LQuth| v Jdv=0 (1.6)
vl
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and of satisfying the entropy inequalitid ¢theorem)

/ Q(f, )log(f)dv < 0. (1.7)
IR3

The H-theorem implies that any equilibrium distribution function, i.e., any functidior
which Q. (f, f) = 0, has the form of a locally Maxwellian distribution

_p lu—v|?
M(p,u, T)(v) = Ty exp<— T > (1.8)

wherep, u, andT are the density, mean velocity, and temperature of the gas given by

o= f(o)dv, u= }/ vf(v)dv, T = i/ lu—v|?f()dv. (1.9)
R P Jre 3o Jre

There are several papers that refer to the numerical solution of the Fokker—Planck or
Landau—Fokker—Planck equation. Among these we recall [2, 3, 5-7, 9-11, 14, 15, 19-
30, 34].

Most of them are devoted to the Fokker—Planck equation [9, 20], or they consider c
servative and entropic schemes in simplified situations, such as FPL equation in dimen
two of velocity or spherically symmetric solutions in space homogeneous situations [2
6, 15, 30]. Entropic schemes are physically relevant and, as observed in [6], are abl
prevent oscillations. The construction of a conservative and entropic scheme for the ¢
eral situation has been considered by Degond and Lucquin-Desreux [11, 21] and Buet
Cordier [5]. Several fast approximated algorithms to reduce the computational comple’
of these methods have been proposed recently [7, 19].

Although these fast schemes are able to preserve the most relevant physical prope
the degree of accuracy of such approaches is not clear. However, even if conserve
properties are not imposed from the beginning, an accurate scheme would provide
accurate approximation of the conserved quantities. A detailed comparison of the pre:
scheme with the schemes proposed in [7, 19] is the subject of a work in preparation [1

Here we will extend to the FPL equation a new spectral method for the numerical solut
of the homogeneous Boltzmann equation based on a Fourier spectral approximation o
collision operator (1.2) recently introduced in [25, 26]. In these papers a discretization
the collision operator based on Fourier expansion of the distribution function with resp
to the velocity variable has been developed. The main advantage of the method is tha
can obtain highly accurate numerical solutions at a reduced computational cost.

For the FPL equation, we show that the method reduces the quadratic coD{rom
to O(nlog, n), wheren is the number of parameters which characterize the discretize
distribution function with respect to the velocity variable (for example, for afinite differenc
method with a grid in velocity space witk grid points per directiom = N2; for a Monte
Carlo method where the distribution function is approximated\byarticles,n = 3N;
and so on). Furthermore, the method can be designed to preserve mass and to approx
momentum and energy with spectral accuracy; i.e., the error decreases faster than any
of the step size of the mesh in velocity [8, 17].

Itis interesting to remark that, by a direct comparison of the results both in the Boltzma
and in the FPL case, one is driven to the conclusion that the spectral method gives the <
problem to be solved, in which the characteristics of the collision operator are entir
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contained in the coefficients of the scheme. In other words, any bilinear integrodifferen
equation of kinetic type, conserving mass, momentum, and energy, has the same spt
form. This allows us to concentrate on a high resolution of the kernel modes and to cons
the development of spectral methods for the FPL grazing collision limit of the Boltzma
equation [29].

In the Boltzmann case, for the variable hard-sphere (VHS) model, the computatior
such modes reduces to a single integration that in some cases (hard spheres, Ma
molecules) can be computed explicitly. For the FPL equation, we are in a similar situati
The calculation of the kernel modes of the FPL operator requires only the computat
of one-dimensional integrals for the FPL equation with two dimensions in velocity
two-dimensional integrals for the FPL equation with three dimensions in velocity (s
Appendix).

The rest of the paper is organized as follows. In the next section we introduce the Fou
spectral method for the FPL equation and discuss the main properties of the sche
Section 3 is devoted to the development of a fast algorithm for the computation of -
scheme. We show how the use of transform methods allows us to reduce the cost
O(n?) to O(nlog, n). Numerical results, for both the Maxwellian and the Coulombian cas
that confirm the spectral accuracy and the efficiency of the method are given in Sectio
Finally in Section 5 we discuss some future developments. In a separate Appendix we
the details of the computation of the kernel modes.

2. SPECTRAL PROJECTION OF THE FPL EQUATION

A standard approach to the numerical solution of kinetic equations such as Eq. (1.1
based on a splitting method (also referred to as a fractional step method). If we wantto s
the equation of a time stept, the method consists of solving a sequence of two steps,

af

E = QL(fv f)s o

(collision step)
f(x,v,0) = fo(X, v),
af -
— 4+ v-Vyf =0, .
ot (convection step)
f(x,v,0) = f(x, v, At),

where fo(X, v) is the initial condition.
Such a scheme is only first-order accurate in time; i.e., the difference between the e
and approximate solution after one time step (local truncation error) is second orslgr in

f(v, At) — f (v, At) = O(At?).

A different splitting strategy leads to a higher order approximation in time. A very commc
and simple scheme is Strang splitting [32], which gives second order in time. This appro
has been used for the numerical solution of the Boltzmann equation in [23].

From now on we restrict ourselves to consider a spectral projection of the space ho
geneous FPL equation

of
P QuL(f, ), (2.10)
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supplemented with the initial condition
f(v,t =0) = fo(v). (2.11)

First, we observe that a simple change of variable into the FPL collision operator (1
permits us to write

Qu(f, Hw) =V, / AQ(fF+9V, ) - fVefv+g)dg (2.12)

whereg = v — v,.

2.1. Derivation of the Method

Similarly to the Boltzmann case [25] it can be shown that for a collision operator su
as (2.12) we have the following property:

ProPOSITION2.1. Let Supg f (v)) € B(0, R), where5(0, R) is the ball of radius R
centered in the origin. Then

Qu(f, Hw) =V / AQ(f+9VFi@ — fVef(v+0)dg,

B(0,2R)
withv + g € B(0, 3R).
Proof. Indeed, ifv andv + g € B(0, R) then

gl =lv—v—gl =<[v[+|v+9l =2R
Otherwise, ifv orv + g ¢ B(0, R) then

Qu(f, HH(w) =0.
Finally v < Randg < 2R implies

lv+9l < vl +19] = 3R.
|

Thus, as for the Boltzmann equation [25, 26], in order to develop a spectral approximat
to (1.2) we can consider the distribution functidriv) restricted on the cubeT, T]3
with T > 3R, assumingf (v) = 0 on [T, T]3\B(0, R), and extend it by periodicity to a
periodic function on{T, T]3. As observed in [26], in practice, sindeis assumed to be a
periodic function, it is enough to take > 2R to prevent intersections of the regions where
f is different from zero. To simplify the notation, from now on we will assuie 7 and
henceR = 7 /2.

The distribution functionfy is approximated by the truncated Fourier series

N
fn@) = > fid (2.13)
k=—N
1

fo=—"" f (v)e 'k do. 2.14
K= Gy - (v)e v ( )
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Here we use a compact notation to denote the Fourier modes and its summatlon. |
we actually mean a vector with integer compone(is, k;, k3), and the summation of any
quantityhy, = hg , k) that depends okiis to be interpreted as

N N N N
D= D" > D Nikeko-

k=—N ki=—N ko=—N ks=—N

We obtain a set of ordinary differential equations for the coefficiéptsy requiring that

the residual of (2.12) be orthogonal to all trigonometric polynomials of degi¢¢3, 17].
Hence fork = —N, ..., N

/ <% — QL(fn, fN)> —kvdy = 0. (2.15)

By substituting expression (2.13) in (2.12) we get

N N
Ql_(fN, fN) = Z Z fAl fAmB\L(l,m) ei(|+m).u’

I=—N m=-N

where
BL<I,m>=/BO W0 +md —m)—( +m)-ul —m)- ] €9mdg,
O,m)

with u = g/|g|. The prewous expressmn can be rewritten, as in the Boltzmann case,

difference of two termsﬁ,_(l m) = B, (I, m) — B, (m, m), where theFPL kernel modes
BL(I, m) are given by

Bud,m) = / w2 - ( - w2 dg. (2.16)
B(,r)

Itis very remarkable that (2.16) is a scalar quantity completely independent of the funct
fn and of the argument. In addition it can be easily proved that

PROPOSITION2.2. Let B (I, m) be defined by2.16). Then
(i) Bud,m) =By(=l,m)=B.(,—m) = B, —m).
(i) BL(m, m) is a function ofim|.
(i) If the kernel(g) = A|g|>t” then|B_ (I, m)| < |I|?B_(0, 0), where

y+5

BL(0,0) = 47 A

Finally, using the orthogonality property we get from (2.15) the scheme

f N s
%: > fifwpd.m), k=-N,....N. (2.17)

I+m=k
I,m=—N
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Remark 2.1.

e As a consequence of point)(and of the fact tha® depends only oifg|, the Landau
kernel modes are real.

e Scheme (2.17) has exactly the same structure of the Boltzmann scheme derived in
26]. The only difference is the presence of the FPL kernel modes instead of the Boltzm
kernel modes.

2.2. Main Properties

Let us first set up the mathematical framework of our analysis. Fot ang9, fy (v, t)
is a trigonometric polynomial of degré¢ in v; i.e., f(t) € IPN where

PN = sparfe*v| — N <k; <N, j=1,2 3}.

Moreover, letPy : L2([—x, 7]%) — IPN be the orthogonal projection upd@ in the inner
product ofL?([—7, 7]°) (see (2.15)):

(f —=Pnf,9) =0, VpelPN.
We denote thé.?-norm by
Il = ((f, fHY2

With this definitionPy f = fy, where fy is the truncated Fourier series 6f(2.13) and
the method defined by (2.17) can be written in equivalent form as

of
S = Q. f) (2.18)
with the initial condition
fN(U,t = 0) = fo’N(v), (219)

where we denote witlQ" ( f, f) the FPL collision operator with cutoff over the relative
velocity and QK (f, f):=PnQ(fn, fn). We point out that because of the periodicity
assumption orf the collision operatoQ'(f, f) preserves in time the mass contained in
the period. In contrast, momentum and energy are not preserved in time.

From point(i) of Proposition 2.2 it is also clear that the projected collision operatc
Qk,(fN, fn) will preserve the mass in time. In fact, from

o= / fu () dv = (21)° fo,
[-m,7]3

we obtain
dfo

N
= S o fm(B(=m.m) — BL(m.m) =0,

m=—N

sinceB (—m, m) = B, (m, m).

Next if we denote byH([—r, 7]%), wherer > 0 is an integer, the subspace of the
Sobolev spacéd" ([—, 7]°), which consists of periodic functions [8], we can state the
following [29]:
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PROPOSITION2.3. Let f, g € L?([—n, 7]®). Then

IQ(f, @llz < Clighall f .

Following the same strategy as in [26], we can show that consistency and spectral accL
of the method will be a consequence of the previous estimate of the real FPL operator.

The consistency of th&? norm for the approximation of the FPL collision operator
QL (f, f) with QK (fn, fn) is given by

THEOREM2.1. Let f € H3([—x, 7]*). Thenvr > 0

1Q"(fn, fa) Il

|Q"(f. f) — Q(fn. fN>||zsc<||f — fnllmz + NG

), (2.20)

where C depends anf ||,.

Proof. First, we can split the error into two parts:

|Q“(f. ) — QR (fn. fu)]],
< IQ (f, f) — Q" (fn, fu)ll2+ || Q- (fn. fn) — QR (fn. fn) ||,

Now clearlyQ-(fy, fn) € IP2N and henceQ" (fy, fn) is periodic and infinitely smooth
together with all its derivatives. Thus [8]

C
Q-(fn, fn) — QR (s T, < — IQ (fn, fa)lle, Vr >0.  (2.21)
2 N p
Applying Proposition 2.3 and the identity

Q-(f, f)—Q (9.9 =Q"(f+g,f —0)
we have
IQ-(f, ) — Q-(fn, fn)ll2

=IQ"(f + fn, f — fn)ll2 < CIF + fullall f = fallwz < 2Call fllall f — fnllnz.
]

Finally the following corollary states the spectral accuracy of the approximation of t
FPL collision operator:

COROLLARY 2.1. Let f € Hi([—7, 713, r > 2. Then

C
Q" (f, f) — Qu(fn, fn)|, < W(”f”H{, + QN (fns f)llkg).  (2.22)

Proof. Itis enough to observe that

Cc
If = fnllnz < W”f”H{,'
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Remark 2.2. From the previous corollary it follows that

(Q"(f, £),0) — (Qn(fn, ). @)] < ||(p||2(||f||H' +1Q (. fa)llkg),

— Nr Nr-2
and hence, by taking = v, v, the spectral accuracy of the moments. In particular it follows
that, except for the projection errors on the initial data, the variations of momentum &
energy introduced by the semidiscrete scheme are spectrally small and hence the obs:
variations with respect to the projected moments are due to the aliasing of periods. Al
ing effects are always present when one approximates a vanishing function by a peri
function (see [8, 17]).

3. AN nlog, n EXACT ALGORITHM
Let us rewrite scheme (2.17) in the form

af
Kk Z femfmBLk —m,m), k=—N,...,N. (3.23)

m=—N

In the previous expression we assume that the Fourier coefficients are extended to
for [kj| > N, j = 1, 2, 3. The straightforward evaluation of (3.23) requires exattin?)
operations, whera = N% andd > 2 is the dimension of the velocity space. As we will
see, thanks to the particular structure of the kernel modes, using transform methods
possible to reduce the computational cost to ddiy log, n) operations.

To this aim we observe that the teréwL(I, m) splits as

d
Bud,m = '2/ LG R |p|q/ W(g)p e dg
B(0,) p.g=1 B(0,7)

d
= 12F(m) — Z Iplg! pg(m) (3.24)

p.o=1
=1?F(m) =1 Z(m)IT,
wherel T denotes the transpose of the vedter (I, |2, 13) andZ = (I q) is @ 3x 3 sym-

metric matrix.
Thus we can write

Bud, m)y =12Fm) — 1 Z(m)IT — B (m, m), (3.25)

and so the resulting scheme requires the evaluatiah(@f+ 1)/2 + 1 convolution sums
for the gain term (the number of distinct element&qflus one) and a single convolution
sum for the loss term:

N
afk _ Z fk " m(k m)zF(m) Z fAk—mf\mBL(m’m)

m=—N m=—N

- Z Z ficem fm(kp — Mp) (Kg — Mg) | pg(M).
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It is well-known that transform methods enable us to evaluate a convolution sum of
form

N
Sky= Y f(k—mgm), (3.26)

m=—N

where f andg are arbitrary functions oz? in IR, in O(nlog, n) operations instead of
O(n?) [8]. This can be easily achieved in the following way:

e First, using the FFT algorithm one transforrhandg to f andg at a cosO(n log, n).

e Next one performs a term by term multiplication of the transformed functioasd
g ata costO(n).

e Finally it is enough to transform the result through the inverse FFT algorithm at a c
O(nlog, n) to determineS(k).

For the details of the implementation of this standard technique for spectral methods
refer the reader to [8]. In a separate Appendix we give the details of the computatior
BLd, m).

4. NUMERICAL TESTS

In this section we perform some numerical tests of the scheme, to check the spe
accuracy and the efficiency of the method.

4.1. Time Discretization

All calculations have been performed by a fourth-order Adams—Bashforth scheme, v
fixed time step.

The first three values of the sequence have been computed by a fourth-order ex
Runge—Kutta scheme. This Adams—Bashforth scheme provides the high temporal a
racy needed to demonstrate spectral accuracy in velocity, at the cost of only one func
evaluation per time step.

The FPL equation suffers from the stiffness typical of diffusion equations. The stabil
condition requires that the time step scales with the square of the velocity step. This me
that by doubling the number of Fourier modes per direction, the total number of time st
becomes four times bigger to compute up to the same final time. We have not perforr
a stability analysis of the scheme, and the stability condition used in the computation
been found empirically.

No attempt has been made to overcome the numerical stiffness of the problem cause
diffusion. Although this is a very important issue and deserves a careful study, it is bey
the scope of the present paper. Further comments will be found in the last section.

4.2. Test Cases
We consider three test cases.

Test #1(BKW exact solution
Two dimensions in velocity space. Maxwellian molecules (iye= 0), with Cy =
1/(2rm).
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Initial condition:

U2
f(v,0) = - exp(—v?/c?).

o2

Integration timetnax = 15. This problem has an exact solution given by [4, 19]

1 1—SU2 U2
fe.0= zn—sz<25‘ T Eﬁ) exp(‘@)’

whereS = 1 — exp(—o2t/8)/2. In the computation, the scaling parametds chosen in
such a way that the numerical support of the initial condition is well approximated |
B, ).
This test is used to check spectral accuracy, by comparing the error at a given time, w
usingn = 8, 16, 32, and 64 Fourier modes for each dimension.
Test #2(Sum of two Gaussiahs
Three dimensions in velocity space. Coulomb case ft.es, —3), withCy = 1/(4x).
Initial condition:

_ 1 lv— 20€? v+ 20€|?
f(v,0) = 22r0?2 [exp(—izg2 + exp %2 )|’

with o = 7/10. Integration timetyax = 10.

Heree, = (1, 0, 0) denotes the unit vector in the directiogn

This testis used to compute the evolution of the entropy and of the second-order mome
Test #3(Rosenbluth problejn

Three dimensions in velocity space. Coulomb case, @jth= 1/(4r) as before.

Initial condition:

2
f(v,0) = éexp(_s(lvlTﬁ))

with o = 0.3 andS = 10.

Integration timetnyax = 900.

This test is used to compute the evolution of the solution in time and to compare f
results with those obtained in [6, 31].

4.3. Numerical Results

For the first test, we compute the error by comparing the numerical solution to the ex
solution. In Table | we report the relative™, L, andL? norms of the error at time= 1
foro = 7 /VmaxandVmax = 6.6. In the last three columns the order of accuracy is reporte
computed as logerr /err1). The same quantities are reported in Table Il when the solutio
is very close to equilibrium, at time= 100 forVyx = 7.7.

In Table Il we report the corresponding error in energy, together with the velocity
which the maximum error occurs.

The relative norms of the error are computed as

maX|ex(t)]

() = el
e ) = o] (o, V)

(4.27)
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TABLE |
Short-Time Convergence Test for Maxwell Molecules in 2D

Error at timet = 1 for Vypa = 6.6 Convergence rate
# modes L Lt L? L L? L?
8x8 168x 10 2.67x 101 1.39x 101 3.52 3.00 3.13
16 x 16 146 x 102 3.32x 102 159 x 102 12.98 13.46 13.35
32x 32 180x 10 294 x 10°¢ 152 x 10°¢ 7.47 8.05 7.60

64 x 64 101x 1078 111x 108 7.84x 10°° — — —

A CI0]

err(t) = 721( Ol (4.28)
o Skla®f? )”2

ern(t) = (72( T bE) (4.29)

where f (vg, t) is the exact solution, ane(t) = f (v, t) — fn(wk, t) is the difference
between the exact and the numerical solution.

The rate atwhich the error decays with the increase of the number of modesis anindica
of spectral accuracy. When the number of modes becomes higher, however, the ord
accuracy does not increase. This is because the main cause of error is the approxim
of the distribution function with a periodic function in phase space. In other words, t
dominant error is aliasing error.

This effect is more evident by looking at the figures. In Fig. 1 for large time the aliasi
error is dominant, and there is no gain in using a finer grid. In fact, when using more g
points, one should also increase the period, so that the discretization error is compat
with the aliasing error. In Fig. 2 the result of similar computation is shown, but a larg
period has been used by taking= 7/7.7. In this case the aliasing error is reduced anc
accuracy is greatly improved by increasing the number of Fourier modes. Clearly, for v
long times the dominant error is again due to aliasing (see Table Il). For a more deta
discussion of this issue see [26].

For the second test we compute the entropy decay (Fig. 3) and the evolution of
temperaturd, andT, (Fig. 4) defined by

T [ —u?f)do T [(vy —uy)?f (v)dv
T [ f)dv YT [ f)dv ’

TABLE Il
Long-Time Convergence Test for Maxwell Molecules in 2D

Error at timet = 100 forVya = 7.7 Convergence rate

# modes L> Lt L2 L L? L?

16 x 16 437 x 1072 2.98x 1072 2.80x 102 12.31 11.93 12.20
32x 32 863 x 10°° 7.66 x 10°® 5.96 x 10°® 2.92 3.038 291
64 x 64 114 x 10 9.37x 1077 7.94x 1077 — — —




TABLE IlI
Short- and Long-Time Behavior of the Relative Error in fv? for Maxwell Molecules in 2D

t=1,Vyha=6.6 t =100 Vyax = 7.7
# modes L> error in fv? Position L> error in fv? Position
8x8 151 x 10! (-3.3,3.3) — —
16 x 16 992 x 10°? (0.0, 6.6) 471x 102 (0.0,-7.7)
32x 32 141x 10 (6.6, 0.0) 222 x 10°° (1.925,-0.9625)
64 x 64 259 x 10°° (0.0,-3.3) 114x 10°° (—4.09, 1.925)
10° ol - - .- .- .- .- .- .-
107 —,'/. 1
!
102 r\_
10° £ E
10" b 1
510° ¢ 3
o L Seeeai A...,A..........,—.—:;-_r;:;;-_g_-_".'
107 | T J
wl o7 .
/
/
10° ¥ ]
107 L 1
0 5 10 15

t

FIG. 1. RelativeL! norm of the error for Test #V,,.x = 6.6. Number of modes:?g(dot—dashed line), £6
(continuous line), 32(dotted line), 64 (dashed line).

FIG. 2. RelativeL! norm of the error for Test #N., = 7.7. Number of modes:?8(dot—dashed line), £6
(continuous line), 32(dotted line), 62 (dashed line).

228
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-1.3 T T T T T T T

FIG. 3. Entropy decay for Test #2. Number of modes? {dotted line) and 32(continuous line).

whereuy anduy are the components of the mean velocity. In the figures, the dotted line
obtained with 18 modes and the continuous line with®3odes. The entropy is computed
by discretizing the expression

H :/ f(v)log f (v) dv
[-T.T]3

on the velocity grid by a straightforward formula.
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FIG. 4. Temperature evolution for Test #2. Number of modes:(tiétted line) and 32(continuous line).
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TABLE IV
Computational Costs (Seconds) for One Evaluation of the FPL
Operator in 2D and 3D

2D 3D
# modes CPU time # modes CPU time
8x8 0.0055 8x 8x 8 0.20
16 x 16 0.027 16x 16 x 16 2.15
32x 32 0.16 32x 32x 32 23.3
64 x 64 0.73 — —

The computation times for the evaluation of the collision operator are reported in Table
All the calculations, including the tests for the computation time, have been performed o
simple Intel Pentium 266 MHz machine, running under Linux. Note that the increase of1
computational time is in good agreement with the theoretical prediction, since it increa
approximatively as log, n.

For the last test case we compute the time evolution of the distribution function.

In Figs. 5 and 6 computations performed respectively Witk 16° andN = 32 modes
are reported. In the figures we show the cross section of the distribution function at tin

t=0,9, 36,81, 144, 225, and 900. The results are in good agreement with those prese
in [6, 31].

5. FUTURE DEVELOPMENTS

We have presented a way to construct fast spectral methods for the FPL equation.
The presentwork is a first step in the construction of an effective scheme for the numer
solution of the FPL equation. The method should be suitable for treating cases where

2 . )
-1 0 1

FIG.5. Cross section of the distribution function at different times, for Test #3. Number of mode &6
values ); trigonometric reconstruction (continuous line).
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x 107

(40,08

FIG.6. Cross section of the distribution function at different times, for Test #3. Number of mode$13@
values §); trigonometric reconstruction (continuous line).

distribution function can be effectively described with a reasonably low number of Four
modes. This is the case, in particular, of smooth distribution functions.

The main features of the method are its simplicity and generality and the possibil
of providing spectrally accurate numerical approximations with a strong reduction in t
computational cost. In fact, using transform methods it is possible to evaluate exactly
spectral scheme with on9 (n log, n) operations as opposed to the usDah?) cost. From a
physical point of view the method preserves the mass whereas the other physical prope
such as conservation of momentum and energy are “spectrally preserved.” These prope
are strongly influenced by the aliasing effects in the scheme and hence depend on the cl
of the computational domain in the velocity space.

The problem of finding a suitable time discretization to avoid the restriction on the tin
step needs further investigations. This problem has been treated with implicit scheme
[9, 20] for the Fokker—Planck equation and in [15] for the FPL equation in the radial
symmetric case.

For the general case this problem is not easy to solve, and the use of implicit sche
would be very expensive. An alternative to an implicit scheme could be the use of
plicit schemes with a large stability region [22]. Such an approach is under investigat
[24].

Inthe near future we plan to extend this approach to spatially nonhomogeneous situati

APPENDIX

Computation of the Kernel Modes

We will restrict ourselves here to the case of inverse-power laws; he(ge= A|g|”+2.
To simplify notation we fixA = 1.
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To implement the scheme, the following quantities are needed:
Fm= [ jgreomdg
B(0,7)
and
Ipq(m) =/ |g|ygpgqeig.mdgv p,q= 1""’d'
B(0,7)
We consider separately the computation of the coefficients in 2D and 3D.

2D Case

A simple calculation (see [26]) shows that in two dimensions
F(m) = F(Im) = 271/ r?*33o(/mjr)dr, (A.30)
0

whereJ; is the Bessel function of order 0.
In addition it can be shown that

Imm=;me+ﬁ&femM,
Iﬁm=;me—ﬁ&ﬁGmM, (A31)
lmm=wm=ﬁ$mmx
where
G(m|) = /07r rrH3c(mir)dr (A.32)
and
C(x) = /0271 COY(X COS¢p) COY2¢) dop. (A.33)

Thus the computation of the FPL kernel modes in 2D reduces simply to the computat
of two one-dimensional integrals(|m|) andG(Jm|) for eachm. These quantities can be
computed very accurately once and then stored in two bidimensional arrays.

A very efficient way to compute all these integralSN?) operations is the following.
First write the integraF as

27

FmD =

Fi(r|m|) (A.34)
with

Fi(2) = / X" 2 Jo(x) dx.
0
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Because the coefficients depend onlymi itis enough to compute them for = (my, my),
with 0 < m; <m, < N. Let us sort those points in increasing sire?), j =1,...,
(N 4+ 1)(N +2)/2,|mi+D| > |mD|. Then one is left with the computation Bz [m()|).
This computation involves the evaluations of integrals of the form

| m+D |
/ X" 23 Jo(x) dx.
T

|m(i)|

Note that many such integrals are zero—those for wiigt| = |/mU+9|. Furthermore,
the integration interval is very small; therefore the integrals are accurately computed v
few calculations. Because the function is regular, we used an adaptive Romberg quadr:
rule, with tolerance 10'3,

The value of

VT4

FO) =2r
© y+4

is computed analytically.
For the computation o&(|m|), we use the same technique, giving

1
G(m|) = WFZ(T[””D,

where
z
Fo(2) = / X" +3C(x) dx.
0

The functionF, can be computed on the grid by using the same technique used for
computation ofF;(x). The functionC(x) is computed by cubic spline interpolation of
precomputed values of the integral (A.33) on a uniform grid in the intervaR{Q,], with
Rmax = N7+/2. The number of grid points for the computation@has been chosen as
Np = [20Rmay] ([-] denotes the integer part). The computation of the valueS (@ on

a grid is performed by simple trapezoidal rule, which is spectrally accurate in this ca
since the integrand is periodic. The values of the derivativ€ ©f) at the extrema are
precomputed and used to determine the coefficients of the spline interpolation.

3D Case

It is easy to verify that (see [26]) in three dimensions

47

F(m) = F(m[) = i[5

Fs(r|m)), (A.35)
where

F3(z)=/ X’ *+3 sin(x) dx.
0

The functionF3(r|m|) can be efficiently computed on the three-dimensional grie
(mg, mp, mg), 0 < My < my < mg, by using the same technique used in the computatio
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of F1(2). The value fom = 0 is computed analytically and is

y+5

T
FO) =4n .
© y+5

The computation of is a little more involved. Let us start from the definition

lop (M) =/ lq|” exp(iq - Mg,z dq.
B(O,7)

Because of the symmetries &f it is enough to computeész(m) and I12(m), for m =
(Mg, mp, mg), with0<mg; <m, < N, 0< mz < N.We have

I33(M2, My, M3) = lzz(My, Mz, Mz),
[33(—mMyg, Mz, Mg) = l33(My, Mz, M),
I33(My, My, —Mg) = I33(My, My, M3),

[12(M2, My, M3) = l12(Myg, Mz, Mz),
[12(—=Mg, Mz, M3) = —I12(My, My, Mz),
[12(Mz, My, —Mg) = I12(My, My, M3),

l11(Mg, Mg, M3) = I33(My, M3, My),

I22(My, Mg, M3) = l33(M3, My, My),

l23(My, Mz, M3) = l12(Mz, M3, My),

I31(Mg, My, M3) = l12(M3, My, My).

Evaluation of §3

Simple computations show that

T
[33(Mg, My, M3) = 27T/ p" Fy (Pms, py/mé + m%) dp,
0

where
Fa(a, b)=/ cogacosh) cos 6 sind Jo(bsing) do.
0
Therefore
4 v+6
133(0) = = .
33(0) 3,+5

For each value ah, |33 can be computed by a nested call of an adaptive quadrature routir
Note that the tolerance of the innermost quadrature call must be more stringent than the
of the outermost quadrature, in order to ensure convergence of the procedure.
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Evaluation of |,

Similarly to the previous case we have

mpmy T
l12(Mg, My, M3) = e 4 m2 / P’ Fs (Pm& P/ ms + m%) dp,
1 2 Jo

where
Fs(a, b) = / cogacosd) sin° 6C(bsind) do
0

andC(x) is defined in Eq. (A.33). Thuk»2(0) = 0, becaus€ (0) = 0. As in the case of
I33, for each value ofn, I, can be computed by a nested call of an adaptive quadratu
routine.
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